In string theory, we now have overwhelming evidence that space is an emergent phenomenon. It is not just one of Witten's progressive ideas. Instead, it is an idea that even Brian Greene often explains to his popular audience. The statement means that we should not think about the objects and events to take place on a welldefined background geometry; we should not think about space and time as basic assumptions whose existence is guaranteed before we consider anything else.
General relativity has taught us that space and time should not be thought of as a static arena for other phenomena. Instead, they are dynamical players: the curvature of space and time tells matter how it should move, and matter influences spacetime's curvature. But the lesson of quantum gravity and string theory in particular is more farreaching: space and time do not have to exist at the very beginning  they are kind of illusions. Moreover, there can be many different illusionary geometries that emerge if we look at the same physical system.
Quantum mechanics guarantees that the concept of a completely smooth geometry is incompatible with quantum mechanics that make things fluctuate. But string theory goes much further. Geometric descriptions, such as general relativity, are only approximations valid at very long distances. At very short distances, comparable to the "length of the string" (string scale) or "the smallest meaningful black hole" (the Planck scale), physics does not admit a simple description in terms of usual geometry. Geometry is generalized to something much more grandiose, and the difference between geometry and matter disappears  this is the content of unification of gravity with other forces and matter.
String theory implies a lot of dualities, i.e. equivalences between seemingly different theories. For example, Tduality shows that a universe with a circular dimension of radius R is physically indistinguishable from another Universe with a circular dimension L^2/R, where L is the constant length associated with the strings (string scale). A radius smaller than L has identical physics as the inverse radius which is greater than L. If one compares these two equivalent universes, she must first create a dictionary: for example, the objects with momentum N/R in the "small" universe map to string that are wound N times around the circle of the large universe, and vice versa.
The momentum is the generator of translations, and you can see above that it behaves physically in the same way as the winding number (how many times a string is wrapped). It is just a matter of convenience whether we call something "momentum" or a "winding number" in these Universes with circular dimensions. Also, mirror symmetry (which is really a triple Tduality performed in a smart way) analogously relates two very different 6dimensional shapes (CalabiYau mirror dual manifolds) which nevertheless lead to identical physics if you use them as the hidden dimensions for a string theory.
The momenta etc. can have the interpretation of winding numbers, electric charges, and so on, in various equivalent descriptions of the reality. Different equivalent descriptions of reality do not agree what the spacetime geometry is. One of them can become much more reasonable than others, but it is only in the case in which the radii and size of this geometry are much greater than the fundamental scale (for example the string scale). In this case, one geometry is much more realistic and convenient description than others. But because I need the size of the geometry to be large, geometry is just an emergent phenomenon. At very short distances comparable to the fundamental scale, geometry is replaced by a generalized, quantum, stringy geometry that contains much more stuff that we don't usually consider to be "geometry".
Geometry becomes unseparable from other physical concepts, objects and phenomena. The notion of topology of the space(time) manifold also makes sense as the approximation in the limit where we study the longdistance behavior only. At very short distances, quantum mechanics guarantees that even the topology is fluctuating (quantum foam)  one can imagine that the geometry at very short distances becomes noncommutative, although one must be ready that the word "noncommutative" in the most general situation must be extended and generalized.
Noncommutative geometry is something that allows one to replace functions on a manifold (that commute with each other, if they are multiplied) by discrete matrices (which do not commute)  the smooth, commutative geometry appears from very large matrices. Much like in the naive discrete approaches to quantum gravity (such as "loop quantum gravity"), the character of the spacetime is very different if we probe it with a very good resolution. However, the effects in string theory do not say simply that "space is made of atoms of space". Instead, there are many new objects, fields, concepts appearing in this regime and all of them are "fuzzy" and mixed up in some way. This fuzziness also allows topology of space to change smoothly once a topologically nontrivial submanifold shrinks to very short, substringy distances.
And what about time?
On the other hand, the mystery of emergent time is a great question  David Gross was exactly mentioning this puzzle in his talk at the KITP.
Special relativity guraantees that if space is emergent, time must be emergent as well. String theory in various formulations is Lorentzinvariant, and therefore it should agree with this principle. However the specific formulations we have are able to show that space is emergent, but time is never emergent in these pictures. Well, if you have operators or wavefunctions or whatever, and even if you want to predict the future from the past, you need a concept of time.
Although I wrote that string theory respects the laws of relativity, but it does not allow time to emerge as easily as space, it's not a contradiction. The manipulations that we are able to make with the space cannot be easily done with time  time is different in details, at the end, for example it can have an arrow (timelike intervals have a universal arrow, past vs. future, while spacelike intervals don't).
If one says that time is emergent, the idea of predicting the future from the past must be approximate and emergent as well. Well, it's not shocking if we study the Smatrix: it is the set of amplitudes between the infinite past and infinite future, and with infinite separation, time becomes sharp and welldefined much like space.
If we look at the gaugefixed descriptions, such as the light cone gauge ones (Matrix theory, for example), the gaugefixing always guarantees that there is a welldefined notion of time, and the other operators are simply functions of it. There have been speculations, e.g. by Aharony and Banks, see
http://arxiv.org/abs/hepth/9812237
that Mtheory  and little string theory in particular  had some inherent nonlocality in time. But these conclusions have not been universally accepted yet, I would say. A few more comments: if we adopt the formalism of the Smatrix, the questions go away  the only invariant object is the amplitude at infinite separations both in space and time, and these emergent notions are already "emerged fully" once we study the Smatrix.
However, the Smatrix is not enough to study some detailed questions such as those in cosmology. If we want to understand the early cosmology, it seems sort of necessary (or useful) to understand in what sense the time emerges after the Big Bang. It probably does not make sense to ask what was "before the Big Bang" or "before the Universe was Planckian in size"  because before this moment, the concept of time (and the word "before") had not emerged yet. Nevertheless there is a clear feeling that something is missing, and we should be able to say something about "which universes can emerge" from the BigBang and which cannot. And the answer about this Planckian superearly cosmology seems to require us to learn HOW time can be emerging and what is it emerging from.
Although the usual framework based on predictions about the future only makes sense once the concept of time emerges fully  i.e. at time intervals longer than the Planck time  the question about physics "without time, without the future, and without the past" continues to seem necessary for very early cosmology. How can we replace time with something more general?
Seven planets, including three habitable ones, found around ultracool dwarf star (Synopsis)

“It isn’t only the beauty of the night sky that thrills me. It’s the sense
I have that some of those points of light are the home stars of beings not
so di...
6 hours ago
snail feedback (7) :
It is easy to replace time with something more general! :)
Just change the way you look at time to: seeing it as change.
Could you comment on the difference between not having time and nonunitarity of a theory? This question came of on Physicsforums.
There is another article on emergent time on this blog...
Can you comment on any implications for social ontology?
I tend to think that if we know the 'multiverse' as such, meaning that it is equivalent but different in all scale, otherwise in all manner of form and presence, should we not think that the social body if you will, is very much like an individual body?
Does that make sense?
'Cause for me, I'm a social scientist, this support some ideas about structure and agency, or about what health may mean individually and socially.
Whatever the case, I am impressed with your ability to make something complex and obtuse to the average person, so clear for the average person!
Ha, this is another nice article I have not yet seen before :)!
When you say that
"At very short distances comparable to the fundamental scale, geometry is
replaced by a generalized, quantum, stringy geometry that contains much
more stuff that we don't usually consider to be "geometry"."
and
"Geometry becomes unseparable from other physical concepts, objects and phenomena."
I wonder if the emergence of geometry has something to do with the separation of gravity from the other still unified forces when going from this fundamental scale (where geometry and other physicsy things can not be distinguished) to lower energy scales?
The term "emergence" in such contexts always confuses me a bit, is its meaning similar to or the same as coarse graining, such that for example the notion of geometry is a result of the effective description valid at larger than the very short "ageometric" distances...?
BTW note how carefully I try to avoid upsetting Vladimir Kalitvianski ... :P
In the newest nice article I have not yet read further than the link pointing to here; if this comment does not get me stuck in one of the efficient filters (?), I look forward to reading the rest of it too ... :)
Emergence is used for all kinds of things  from *any* (even accurate)
"derivation" of some conclusion from more fundamental laws to bizarre newage claims (popular among some condensedmatter physicists) that physics can't be reduced to fundamental physics
Is this a dig at Philip Anderson? Sometimes it's hard for a lowly enthusiast to interpret correctly what you physicists are telling each other between the lines.
I know I've asked this before and you gave a perfectly reasonable answer then... but you didn't explicitly state how far apart you see your view as being from Anderson's.
Okay, for some reason I had overlooked your 2008 article "More really is the same thing". I will have to read it through a couple more times to be sure I don't miss anything. So there is a substantive difference, in your view.
It would be great to see an "oped" from Anderson here on TRF in which he responds at length. Probably won't happen, but one can dream.
Dear Eugene, Anderson is a great physicist but yes, I do believe that he's at the core of some of the really weird antireductionist philosophies that are then mimicked by others.
At the same moment, I don't believe he would say too many other specific things I could disagree with. He "just" wants to restrict his focus on more or less individual ideas and deny the connected, hierarchical, bigpicture of science.
Post a Comment