This is the famous equation ‹E=mc^2›. Or \(\diag (1,2,3)\)
«E=mc^2»
OK ‹a^2› \(/ \!\!\!\! P\)
This is \(a\lt b\) and \(b\gt a\)...
Here is an equation
\[
{\LARGE E = mc^2 } \tag{E.1}
\] OK too many spaces.
\[
{\Huge \sqrt{s}\not\in\ZZ}
\] Extended \(\NNN=4\) supersymmetry.
\[ a+3 \zav{\frac{c}{d}} \] in a bracket. Let's try a matrix
\[ \begin{pmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{pmatrix} \] See more matrix commands here or here. Array with lines
\[ \begin{array}{rlc} n & n^2 & n^3 \\ \hline 3 & 9 & 27 \\ 4 & 16 & 64 \\ 11 & 121 & 1331 \end{array} \] Fine, my simplified matrix command:
\[ \pmatrix{ 9 & 10 & 11 \\ 12 & 13 & 14 \\ 15 & 16 & 17}
\] OK?
\[ \eq{ c+d &= 4+3+5 \\ e&= 7+6+85+23}
\] Fine, one may press enter before backslash final bracket without problems.
\[ b=\cases {38+a\\ 48 + b + \pmatrix{2&3\\4&6} }
\] Funny. What about macros for derivatives
\[ \ddfrac{y}{x} \neq \pfrac{f}{x} + \pfrac{{}^2 g}{x^2} + \frac{\dd h}{\dd x} \] And backslash pmatrix without brackets
\[ \array{1&2&3 \\ 4& 5& 6 } \] A product of \(\ket\psi\) and \(\bra\lambda\) is \(\braket\lambda\psi\).
\[
\int_0^\infty \dd x\,\,f(x) = g(x)
\] With limits,
\[
\int\limits_0^\pi \dd x~\sin(x) = 2
\] Ordinary linebreaks with two backslashes,
\[
2+3
=5 \\ 4+6=10
\] OK? The mass is \(125\GeV\), isn't it? Text may be better than rm, respects spaces:
\[ A_{\text{spin matrix}} = \pmatrix{0&1\\ 1&0} \neq B_{\rm bush spin} \]
Test of my standardized macros, the full list to be updated:\[
\int \dd x\,x^2\in \CC\RR\ZZ\OO\HHH\NN\NNN\FF\HH\LL
\] and \(\eV\keV\MeV\GeV\TeV\) and \[
\diag (1,2,3)\pfrac{E_x}{y}\ddfrac{y}{x}\bold{ahoj}\cdot\zav{\frac 12+\frac 45}
\] and \[
\zzav{\frac 12+\frac 34}+\abs{x+y}+\braket{\phi}{\psi}+\ket\psi+\bra\phi+\iddots
\] and\[
\eq{
a+b&=c\\
c+d+e&=f
}
\]
Cutting Science Funding Today Costs Us More Overall (Synopsis)

“For me, it is far better to grasp the Universe as it really is than to
persist in delusion, however satisfying and reassuring.” Carl Sagan The
President ...
15 hours ago
snail feedback (0) :
Post a Comment