Last Monday, Murray GellMann celebrated his 85th birthday: congratulations!
As far as I remember, I have never published a blog post that would be primarily dedicated to GellMann's comments about the foundations of quantum mechanics. So this is the first time. The 17minutelong video monologue above was taken from multihour interviews with him (and analogously, many others) on the "Web of Stories".
Along with Jim Hartle, GellMann is the coauthor of their "strongly decoherent" version of the consistent histories, an approach to the foundations of quantum mechanics. For years, I would quote it as "my #1 favorite interpretation" of quantum mechanics. I still like it. On the other hand, I think that the very fact that one chooses similar "new interpretations" has helped to spread the misconception that there exists a legitimate business of "building new interpretations" because the original formulation of quantum mechanics is "wrong" in some way and the "consistent histories" is just one of them (and needless to say, the hopelessly wrong, intrinsically antiCopenhagen interpretations always preserve their majority status).
In reality, there is nothing wrong with the original postulates of quantum mechanics – the "Copenhagen interpretation", as some people call them – and the "consistent histories" are nothing else than a way to optimize the Copenhagen interpretation to questions that involve several measurements at different moments rather than just one measurement. I wouldn't claim that the founders of quantum mechanics didn't know what to do with a sequence of measurements, however.
Because the specific features of "consistent histories" have pretty much nothing to do with the fundamental issues that make it hard for so many philosophers, people, and even physicists to understand and "accept" quantum mechanics, I would probably no longer choose to emphasize the "consistent histories" because their added value is very limited and much less "essential" relatively to the change of the basic paradigm that was brought by the quantum revolution.
But back to the monologue by GellMann which I endorse almost entirely, at least 95% of it.
GellMann says that he would work on the foundations of quantum mechanics in 1963 and 1964 and this thinking continued throughout his life although he would only start to publish papers about the foundations in the 1980s. In the 1960s, GellMann and perhaps Feynman and another physicist Felix Villars [of the PauliVillars regularization fame; he became a pioneer of biophysics] essentially agreed about the fundaments of quantum mechanics – which were not really very different from GellMann's more recent work with Hartle.
He talks about Everett. That guy wasn't passionate about quantum mechanics, just about problem solving, GellMann said. Quantum foundations were just one of these problems and GellMann suggests that the weapons problems he would be solving for most of his life were at least equally interesting for Everett.
At any rate, GellMann says that back in the 1960s when his modern picture of quantum mechanics was pretty much born, he and Felix Villars didn't know about Everett's work. I emphasize this because some people love to paint Everett as the ultimate source of all new ideas about quantum mechanics like decoherence etc. So just to be sure, there is at least one Nobel prize winner who wrote some of the most sensible papers about the foundations of quantum mechanics who rejects the idea that he was building on Everett's work. Maybe, subconsciously, some ideas of Everett could have gotten to GellMann's head through Feynman although he doesn't really have any evidence for that speculative possibility. ;)
So I really do think that the evidence indicates that Hugh Everett has actually inspired only those who remained deeply confused about quantum mechanics.
GellMann spends several minutes by arguing that the feature of Everett's ideology that there are "many worlds that are equally real" is operationally meaningless. The comment may only mean that the theory treats the possible alternative histories on equal footing, except for their generally different probabilities. But only one of those actually takes place in the "real", experiencebased sense of the word "actually". ;) I completely agree with GellMann. There is absolutely no other physics behind the claims that the alternative histories are "real". At most, it is a new meaningless salvo arguing for a particular interpretation of the word "real" or a paradigm that wants you to imagine how the alternatives look from a metaobserver's viewpoint. But we are not such metaobservers (who "see" unrealized outcomes as well) and because physics is about things we can detect, hypothetical observations of something from an entirely different agent's viewpoint just don't belong to physics.
After 3:00, GellMann mentions Roland Omnes and Robert Griffiths as guys who kickstarted decoherent histories etc. in the late 1980s so they "scooped" GellMann although he had known these things for decades. He explains that others preferred to study the "minimal conditions" and "minimal amounts" of decoherence while he and Hartle always cared about the opposite extreme, the very "strong decoherence" and "lots of decoherence" because in the real world of classical observers, we never really experience any "shortage of decoherence".
GellMann talks about the quantum mechanics' freedom to change the representations at each moment – plus to change the degree of coarsegraining – so the number of potential realms is gargantuan. In practice, we use the "hydrodynamic" limit – histories are defined by intervals of observables which are nothing else than volume integrals of (approximately or exactly) conserved densities. In this quasiclassical limiting "realm" or treatment of the histories, we want this description to be fine enough (if not "maximally fine") so the volumes shouldn't be too large but these volumes can't be too small because we demand some equilibrium in those volumes. The word "quasiclassical" means that the classical equations of motion are a good zeroth approximation for the behavior of the observables (fluctuations, branchings etc. may be added as small corrections).
This picture allows one (as Hartle wrote in some papers) to include the gravitational fields – with large quantum fluctuations of the metric – to the formalism that may define the histories. So GellMann suggests that in this quantumgravity regime, the "decoherent histories" picture may be giving us something new, a generalization of quantum mechanics. At this point, GellMann somewhat interestingly suggests that the "consistent histories" and "Feynman's sum over histories" are morally the same thing so Feynman's pathintegral approach to quantum mechanics could be a "generalization" of quantum mechanics, after all – Feynman's "completely new theory" that he always wanted instead of working on theories initially designed by someone else.
After 9:30, GellMann is asked whether quantum mechanics is taught correctly. When the sumoverhistories as well as (especially) the decoherence histories are perfected, they should perhaps be taught. He says that the Copenhagen picture is correct for all contexts but it is not "convincing". It's hopeless for quantum cosmology.
Here I would say, right, *we* can't prepare many copies of the Universe and measure the probability by repetitions etc. But note that the previous sentence contains the word *we*. It's a limitation of *ours*, not a limitation of the theory. A theory may predict probabilities of events in cosmology that only occurs once but it's clear that we can't measure those probabilities in any quantitative way and no improvement of a theory will ever change that!
There are clearly things happening without human observers, he says. Well, right, if one puts it in this way. However, there are no properties of the events in Nature that humans know without human observers! ;) The previous sentence is a tautology and it's really the only thing one needs to accept that the fundamental description of physics deals with observers. Without observers, no one can know what the events were so he or she or it or they cannot think about them rationally!
OK, you could sense a slight degree of disharmony between GellMann's words and your humble correspondent's emphasis here.
However, that changes totally after 11:50 when GellMann starts to talk about the "foolishness" often associated with the entanglement ("EinsteinPodolskyRosenBohm effect", using his words). He treats this issue at some length in his book; I hope he meant The Quark and the Jaguar.
OK, where did the "foolishness" come from? GellMann says that the bulk of John Bell's work was right but he introduced words that were prejudicial such as "nonlocal". People often say that there is something nonlocal about the EPR phenomena but the only correct similar statement that they could mean, GellMann emphasizes (and I often do, too) is that a classical interpretation of what is happening would require nonlocality (or negative probabilities). But the world is not classical, and no nonlocality is needed because the world is quantum mechanical. As far as GellMann can tell, it's like giving a bad name to a dog and sticking with it.
When the quantum mechanical predictions for Bell's experiment were experimentally verified, GellMann would have expected everyone to scream "Great, we can go home!". Instead of this rational reaction, people would start to say that "there is something seriously peculiar". But the only thing that is seriously peculiar about all of this is the new foundation of physics discovered in the 1920s – quantum mechanics.
As GellMann described in that book, the entanglement between particular polarizations of two photons is no different from Bertlmann's socks (real guy!) and not strange or requiring any nonlocality. Quantum mechanically, the character of the correlation may apply to many types of measurements, so quantum mechanics allows deeper correlations. But the conceptual interpretation is still the same as in the mundane classical case of the socks and no nonlocality is needed. People say that the measurement on one side has to do something to the twin photon. But it doesn't do anything! The only thing that happens is that you measure one property and you also learn the corresponding property of the other particle.
The people "who want to confuse us" sometimes mention that "we choose which property of the first particle we measure", and therefore we affect what kind of states the other particle in the pair may acquire. But the catch and point is that the different types of the measurement (e.g. the linear polarization vs circular polarization) can't take place simultaneously on the same branch of the history. They are on different branches, decoherent from each other, and only one of them may occur. So it's simply not true that we are nonlocally influencing something in our world. In a particular branch of the history, we made some particular decisions "what observable is going to be measured" and some corresponding basis of the Hilbert space is therefore more useful than others – and the information we learn about the other photon is no stranger than the information about the other classical Bertlmann's sock.
And, as Murray added, Einstein's original thesis that if a quantity has a potential to be measured with certainty, then it has to be "real" and have some objective real properties at all times, is simply wrong! It directly contradicts quantum mechanics. If two quantities' commutator is nonzero, nonintrusive measurements of these two quantities could only be performed on different branches of the history. And that's all there is to it.
As he reminds us, GellMann has presented it in his book and so did some other people but this simple point doesn't seem to get across, GellMann complains (and so do I). People keep on being mesmerized by the confusing language involving "nonlocality". What they do isn't necessarily wrong – lots of people do correct stuff – but the vocabulary makes it sound as something totally different than what it is. I couldn't agree more.
Wednesday, September 24, 2014 ... //
Murray GellMann on foundations of quantum mechanics
Vystavil
Luboš Motl
v
2:46 PM



Subscribe to:
all TRF disqus traffic via RSS
[old]
To subscribe to this single disqus thread only, click at ▼ next to "★ 0 stars" at the top of the disqus thread above and choose "Subscribe via RSS".
Subscribe to: new TRF blog entries (RSS)
To subscribe to this single disqus thread only, click at ▼ next to "★ 0 stars" at the top of the disqus thread above and choose "Subscribe via RSS".
Subscribe to: new TRF blog entries (RSS)
snail feedback (27) :
Terrific video. Loved it. Like GellMann lamented, I haven't heard his critique of "nonlocality."
Remind me to ask you how one history is caused to be chosen over another. The probabilities we know, yes, but who or what is picking from them!
Thanks. I am actually tempted to try to convince him to publish his book  or other texts  as free domain, and on this blog, chapter by chapter. ;)
At the risk of excommunication: Doesn't your description of the operational unreality of the MWT, apply to String Theory, as well?
No, it doesn't  all observables and objects computed and analyzed by string theory are exactly as physical as quarks or any concepts in quantum field theories or other successful theories of physics.
And yes, indeed, you were immediately blacklisted because people who need to ask questions like yours have indeed virtually zero probability to bring anything valuable to this blog.
"There are clearly things happening without human observers, he says."
Wouldn't it be fair to call those things "objective relativity"?
Luboš,
What do you think of the new 'fireworks'  black holes can't form papers that are making the news rounds today?
ArXiv links in the news story.
http://phys.org/news/201409blackholes.html
Sorry for the off topic.
She is just stupid. I won't comment on that in any detail. The content isn't much different e.g. from
http://motls.blogspot.com/2005/03/chaplineblackholesdontexist.html?m=1
In David
Peats book “infinite potetial” ( the life and times of David Bohm) page 221, is
said: “Bohm argued that the quantum potential “guides” the electron in a non
mechanical way. But How it operates was less clear.
Vigier favoured explaining the process in terms of some sort of underlying mechanism
a subquantum fluid perhaps. In his opinion the electron exchanges energy and
momentum with this fluid and is this sense is pushed along.
In my view the electron is pushed along by the energetic Higgs field (Vigier), but guided
in a non mechanical way ( Bohm) by its entanglement with its mirror copy image
living inside the Charge Parity symmetric anticopy universe (Multiverse) at a
far distance.
Conclusion,Vigier was a better Marxist than Bohm.
However if there exist a “deterministic based mystification by some non locality system” such as a CP symmetric mirror world somewhere (Multiverse?) with quantum mirror entanglement down to the quantum then it could give still a solution.
I just ordered the book.
I hadn't ever heard that bit about Marxism and Bohm before, either. Theory once again takes precedence over reality!
Murray GellMann plus Leonard Susskind stuck in a 1970 Coral Gables, Florida stalled elevator. bummer.
Agreed totally.
I agree that many worlds interpretation in the sense of them all being "equally real" is just nuts. But isn't the multiverse idea operationally meaningless in the sense that all we know about for sure is the universe we actually live in? If the universe we inhabit only exists by chance, then yes these other universes "must" exist also. But that is assuming it is all by chance. How do you prove chance without assuming it in the first place? By analogy with all the other cases we know about in which chance plays a role? But is analogy enough? I don't claim to know, but would enjoy your thoughts.
Marxism and Quantum Mechanics do not mix well, apparently. You will find out some gems here:
http://www.marxist.com/quantummechanicscopenhagen130705.htm
For example:
"Those most conservative academics who developed quantum mechanics inserted into the subject a direct attack on the philosophical basis of Marxism – dialectical materialism  at the most fundamental level. This was their chosen response to the incompleteness of quantum theory. Almost unbelievably perhaps, they chose to interpret the strangeness of quantum behaviour by denying the existence of physical reality. And as a standard textbook interpretation of quantum mechanics, physicists have been taught for the last 80 years that physical reality therefore only exists as a result of the act of observation. This is the “ Copenhagen interpretation” of quantum mechanics, developed in the late 1920’s by Niels Bohr and Werner Heisenberg. [...] If ideas are weapons, then, like religion, this is another weapon in the armoury of the bourgeois, another part of the defences that surround the unmentionable  the private ownership of the means of production. But there is nothing particularly new in this. The bourgeois are consistently obliged to deny reality to justify their rule. Bush and Blair pray together to the Almighty for guidance (for their “precision” bombing of civilian targets, perhaps?)."
I'm struggling over the reference to Einstein and what 100% probability implies. It is really tempting to think the particle 'has' that property, but I'm starting to doubt it. Then I got confused again  surely an electron 'has' a spin half? Everywhere, it is written that an electron 'has' a spin half and there is no other spin that an electron can have. But I guess that may be a problem of language: one has to think of how it is measured, say by a SternGerlach system. So it may deflect up or down, or be measured in different orientations. What one sees are measurement outcomes. Going from a measurement outcome to an objective property may be a step too far. But what can we do about language  does the electron 'have' a spin half, or not?
Lubos,
You make the accurate statement that it's scientifically meaningless to talk about the other histories as being actual. Yes, it's also similarly meaningless to talk about the multiverse as actual as well. I suppose one could treat the multiverse as a probability wave which is fine.
Lubos, I understand your point, but I believe if a theory claims to be fundamental it shouldn't reference its limit. Copenhagen interpretation assumes classical physics. For example, Landau says that (page 2 of volume 3) :
" It is in principle impossible, however, to formulate the basic concepts of quantum mechanics without using classical mechanics. "
But this is not the case. Omnes also critizes this point in his 1992 paper and Griffiths in his book "Consistent Quantum Theory". Furthermore CH may permit you to ask questions like what happened before measurement. Also it represents core of quantum mechanics much more clearly by single framework rule (in DH language I think one would say that you can't combine results obtained different realms if there is no common refinement). I am fascinated to see that, after a measurement in t_2, you can in one framework you can infer that [a] is true with p=1 in t_1 and in another framework [c] is true with p=1, yet [a] and [c] doesn't commute!. This is I think one of the best presentation of the fact that objective reality doesn't exist.
One of GellMann's students mentioned an anecdote about GM… after GM became frail in 90s, when someone would ask him and QM and interpretations and about philosophy of what QM meant, he would pull out a note from his pocket.. it was a note from his doctor saying that he is not allowed to talk about philosophy of QM anymore. LOL!
The state of the art in the foundations of quantum mechanics is given in Leifer's http://arxiv.org/abs/1409.1570
Lubos, would you consider writing a post on it?
LOL, right. You find analogous Marxist tirades against the Big Bang, too  after all, the Big Bang *was* a kind of creation event so they would prefer an infinite time axis.
Nope, the PBR crackpottery already had a blog post on TRF which is far more than this šit deserves.
All these contradictions are just at a level of makeup, not physics. It's always legitimate to say that the values of observables before a measurement are unphysical.
It's always correct to point out that the ultimate perceptions of the measurements have the same interpretation as in classical physics and this isn't a part of the proper QM formalism by itself, so the existence of the classical limit is needed for the final interpretation of QM. None of these things affects the maths describing the laws of physics which are always on the QM side.
Omnes may have had some aesthetic preferences but Landau hasn't written anything that was wrong.
Why is it that when I see Dr. GellMann's name I always think of personal lubricant?
About your last sentence: Of course I agree that it boils down to uncertainty principle. What I meant that, in CH, there is a specific situation where you can show that two noncommuting properties P and Q are true with probability 1 in different frameworks. Yet, since there isn't any framework where (P and Q) is defined, you can't consider two conclusions together at the same time. This clearly shows that there is no objective reality. I
just say that CH is more clear than copenhagen and it helped me to understand QM. I had two QM courses and both of my instructors implicitly assumed that wave function is real. One of them said two days ago that, wave function collapse is very weird and still didn't understood. I belive usual textbook teaching of QM produce some of confusion, although this doesn't mean Heisenberg or Bohr didn't understood it. One of my instructors obtained phd from top 10 US university and the other one from top 2025. This probably means that instructors at these universities also didn't get it. Why don't replace more clear and selfconsisted one (no reference to classical physics) with the other ?
Great, of course that if something allows people to understand quantum mechanics without leasing them to sharply wrong opinions, it should be taught.
I think QM shows clearly that other universes are possible because reality isn't deterministic. No?
Dear Calin, no, there is no logical relationship between determinism and multiplicity of Universes  which are two different, independent things.
The idea was that from the point of view of natural (QM) laws, all "branches" represent possibilities (there exist more than one solution that it isn't forbidden). In classical mechanics, in a deterministic universe, this is not the case; only one solution, the necessary solution, exist. In QM there isn't a necessary evolution of the universe.
Post a Comment